
JBrowse
A next-generation genome browser

Skinner, Uzilov, Stein, Mungall, Holmes
Genome Research, September 2009

(advance online access)

http://jbrowse.org/

http://genome.biowiki.org
http://genome.biowiki.org

A Javascript genome browser:
http://jbrowse.org/

http://jbrowse.org
http://jbrowse.org

History

• Prototype (TiledImage)

• Server-side rendering (c.f. Google Maps,
Genome Projector, X:Map)

• Current version (JBrowse)

• Client-side rendering

Pre-rendering does not scale

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 1 10 100 1000 10000 100000

R
u

n
ti
m

e
 /

 m
in

u
te

s

Number of features in track

Time to generate tracks: TiledImage vs JBrowse

TiledImage
JBrowse

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 1 10 100 1000 10000 100000

D
is

k
 s

p
a

c
e

 /
 k

ilo
b

y
te

s

Number of features in track

Disk space required to store track: TiledImage vs JBrowse

TiledImage
JBrowse

Figures compare server-side rendering (TiledImage) to client-
side rendering (JBrowse)

D.melanogaster at pixel resolution is an order of magnitude
wider than the continental US

Nested Containment Lists

Alekseyenko & Lee
Bioinformatics, 2007

Query: O(n+logN)
N=database

n=number of results

5-500x faster than
R-trees, MySQL B-trees

(indexing/binning),
Ensembl, UCSC...

Alekseyenko et al

Table 1. Methods and implementations used in this study

Method Index type Implementation tested

R-tree RTree (start,stop) Postgres v8.0.3
multi-column BTree (start,stop) MySQL v4.1.10
binning BTree (bin,start,stop) MySQL v4.1.10

Most methods from the spatio-temporal database realm, exclu-
ding the original R-Tree data structure, have not been attempted yet
in the bioinformatics community, mostly because of their comple-
xity. An interested reader may explore Segment R-Tree (Kolovson
and Stonebraker, 1991), Interval Trees (for example see Cormen
et al. (2001)), MV3R-Tree (Tao and Papadias, 2001), Overlap-
ping B+-trees (Tzouramanis et al., 1999), or other variations on
the general R-Tree. A recent book (Manolopoulos et al., 2005)
gives detailed review of spatio-temporal indexing. However, no
comprehensive comparisons or implementations of them for the bio-
informatics applications are available. In this study we compare our
results with previously published genomics interval query methods
(Kent et al. (2002); Giardine et al. (2003); Birney et al. (2006) and
http://www.gmod.org). Table 1 lists indexing methods and imple-
mentations (Postgres, MySQL) that we have tested in this study.
Based on Gmod’s previous work, we tested spatial indexes using
RTrees in Postgres. Other databases (e.g. Oracle, IBM DB2) also
implement RTree spatial indexes, but we did not test them here.

Interval overlap query remains an active problem for research, for
several reasons. Technical goals for optimal query methods include:
1) database scalability: for database size (number of intervals) N ,
the time and memory complexity for overlap query should ideally
be O(log N) for both the query time and required RAM, and O(N)
disk-space for storage of the database. 2) query scalability: for
a query that yields n interval overlap hits, the time and memory
complexity should ideally be O(n) for the query time and O(n)
or just a constant for the required RAM. 3) construction scala-
bility: the time complexity for constructing the indexed database
should ideally be identical to the computational complexity for con-
structing a standard one-dimensional index, O(N log N), and the
memory complexity should be O(N) or better. 4) updating sca-
lability: the time and memory complexity for adding or altering
M entries should ideally be O(M log M) or better, enabling rapid
dynamic updating of the database. 5) practicality: the query method
should be usable on a typical bioinformatics platform, e.g. 512 MB
- 1 GB system memory, and able to perform a typical genome-wide
analysis (i.e. thousands of individual queries) in seconds to hours.

To understand these technical challenges better, it is instruc-
tive to consider why standard multi-column BTree indexing (e.g.
in MySQL) fails to provide scalable interval overlap query. Inter-
vals are represented as (start, stop) pairs; start and stop can be
indexed separately or together. For the purpose of this example we
will assume the intervals are sorted in ascending start order. For
a given query (q.start, q.stop), finding a first overlapping interval
(e.g. finding the largest x.start such that x.start < q.stop and
checking for intersection) takes just O(log N). However, finding
all overlapping intervals poses a problem, since they are not gua-
ranteed to be contiguous on any of the orderings (start), (stop) or

!"#$%&'()#$*+,

-
'(
#+
$&
.
$/
#$
&'
(
&0
#0
.
$% !"#

!$#

Fig. 1. Storage and querying for interval overlap. In (a), we demonstrate that
using conventional sorting of interval database by start, end coordinates the
interval overlap query cannot halt at first non-qualifying interval (see text),
but has to continue until the end/start of the database, scanning on average
half of the stored intervals. In NCList (b), however, the result set intervals
(in black) are located back to back in each of the sublists (each sublist is
shown in a separate box) and sublists potentially containing more results are
linked to each other by containment links. Therefore, the scanning problem
is eliminated in this case, resulting in lower query complexity.

(start, stop); for example, another overlapping interval might be
present at the very beginning of the start index (see Figure 1). In
practice, this means that scanning for additional hits cannot halt at
the first non-overlapping interval, but must continue all the way to
the beginning of the BTree index, on average scanning half of the
database. This yields a query time complexity of O(log N + N),
which is no better than if no index were used.

In this paper we present a general storage and query method and
data structure, which we call Nested Containment List (NCList),
that facilitates fast overlap queries of the one-dimensional intervals.
We will present all the essential algorithms in the Methods section
of the paper and present synthetic and real data comparisons with
other interval database efforts (Table 1)that employ some sort of spa-
tial R-tree (http://www.gmod.org) or binning indexing (Kent et al.,
2002; Giardine et al., 2003; Birney et al., 2006) in the Results sec-
tion. These results show that NCList offers large improvements in
performance over existing algorithms, both in terms of query speed
and construction speed, and on a standard PC can perform thou-
sands of genome alignment queries per second even on very large
multi-genome alignment databases.

2 METHODS
2.1 Motivations for the Nested Containment List
Interval query can be slow because the overlapping intervals for any given
query may not be contiguous in standard indexing. Therefore, the database
query cannot stop at the first non-overlapping interval, but must scan the
rest of the database. We can easily solve this problem by realizing that it is
caused solely by the intervals that are contained within other intervals, i.e.
x.start < y.start < y.stop < x.stop. (see Figure 2). If a sorted list
of intervals has both start and stop coordinates in ascending order, then the
overlapping intervals for any query are guaranteed to be contiguous in the
list. However, consider a list sorted on start coordinate. If any interval x
contains another interval y, then their stop coordinates cannot be in ascen-
ding order (x.start < y.start but x.stop > y.stop, Figure 2). Removing
contained intervals y from the list guarantees that overlapping intervals for
any query will be contiguous in the list. Formally,

2

Within each sublist, there are no containments
Sorting by startpoint leaves endpoints sorted too

Construction: O(N logN)

Lazily-loaded Patricia Tries

TWiki plugin

Imminent developments
• Lazily-loaded NCLists

• Text autocompletion; “proper” search

• Nextgen sequence data

• Start with basic summarization, then custom tracks

• Community annotation

• Persistent upload & sharing of tracks

• Editing/curation over the web (ackles...)

• Documented image-track API

• Synteny browser (c.f. GBrowse-syn)

• Much more at jbrowse.lighthouseapp.com

Mitch Skinner

