Comparative Genomics with GBrowse_syn

Sheldon McKay, Cold Spring Harbor Laboratory

Outline

A brief survey of synteny browsers

A few challenges of rendering comparative data

Comparative genome browsing with GBrowse_syn

What is a Synteny Browser?

- Has display elements in common with genome browsers
- Uses sequence alignments, orthology or co-linearity Data to highlight different genomes, strains, etc.
- -Usually displays co-linearity relative to a reference genome.

An Embarrassment of Riches*

A Brief Survey of GMOD-friendly Synteny Browsers

SynView A Simple Approach to Visualizing Comparative Genome Data

... A Synteny Browser for Comparative Sequence Analysis

Pan, X., Stein, L. and Brendel, V. 2005. SynBrowse: a Synteny Browser for Comparative Sequence Analysis. Bioinformatics 21: 3461-3468

Sybil: Web-based software for comparative genomics

Crabtree, J., Angiuoli, S. V., Wortman, J. R., White, O. R. Sybil: methods and software for multiple genome comparison and visualization Methods Mol Biol. 2007 Jan 01; 408: 93-108.

+ others...

Youens-Clark K, Faga B, Yap IV, Stein LD, Ware, D. 2009. CMap 1.01: A comparative mapping application for the Internet. doi:10.1093

GBrowse_syn

+others...

Pseudomonas Genome Database vz

Branding ideas..

Desktop Synteny Viewers: Apollo and Artemis

Debating the relative merits of Apollo* and Artemis*

GMOD Browser branding/nomenclature issues...

SynView:

- Add-on to native GBrowse package
- Uses GFF3 or DAS1 compliant data adapters
- GFF requires special tags (allowed in spec.)
- Reference panel on top

SynBrowse:

- Uses same core libraries as Gbrowse
- Uses GFF database adapter
- GFF2 uses standard 'Target' syntax
- Currently only supports two species
- Central reference panel?

Sybil:

- Not GBrowse-based
- Uses chado database
- Whole genome and detailed views

GBrowse_syn:

- Part of GBrowse distribution
- Uses native GFF2/3 or chado adapters for species' data
- Synteny data are stored in a separate joining database

How is GBrowse_syn different?

- Does not rely on perfect co-linearity across the entire displayed region (no orphan alignments)
- Offers on the fly alignment chaining
- No upward limit on the number of species
- Used grid lines to trace fine-scale sequence gain/loss
- Seamless integration with GBrowse data sources
- Ongoing support and development
- Some people think it looks nice

[GBrowse]

GBrowse_syn Architecture

[GBrowse]

Bio::DB::GFF
species1

→

alignments

alignments [PK] hit_id int hit_name varchar(100) [FK] src1 varchar(100) ref1 varchar(100) start1 int end1 int strand1 enum seq1 mediumtext bin double varchar(100) src2 varchar(100) ref2 start2 int end2 int strand2 enum mediumtext seq2

map_id int [PK]
hit_name varchar(100)
src1 varchar(100)
pos1 int
pos2 int

Bio::DB::GFF

[GBrowse]

Legend

[FK] Foreign Key [PK] Primary key

Created by SQL::Translator 0.08

 \Leftrightarrow

Bio::DB::GFF species3

⇒ Bio::DB::GFF ⇒ species4

[GBrowse]

Where do I get the data for GBrowse_syn?

Hierarchical Genome Alignment Strategy

Raw genomic sequences

Identify orthologous regions GBrowse_syn (ENREDO, MERCATOR, orthocluster, etc)

Nucleotide-level alignment (PECAN, MAVID, etc)

GBrowse_syn

Further processing

GBrowse

Getting Data into GBrowse_syn

CLUSTALW, FASTA, PECAN, MSF SELEX, STOCKHOLM, GFF3, TAB-DELIMITED, etc...

GBrowse_syn interface

PECAN alignments for *Caenorhabditis* (WS197)

■ Instructions		
Select a Region to Browse and a Reference species:		
Examples : c_elegans X:10500011150000, c_briggsae chrX:620000670000, c_elegans R193.2.		
■ <u>Search</u>		
Landmark:	Reference Species:	/// — — — — N
X:10500011150000 Search Reset	C. elegans 🔻	<
Aligned Species:		
☑ C. briggsae ☑ C. remanei ☑ C. japonica		
Data Source : PECAN alignments for Caenorhabditis ▼	Display Mode: Three species/panel Click to show all species in one pane	I
■ <u>Overview</u>		
Reference genome: C. elegans		
X X OM 111 241 341 341 341 341 341 341 341 341 341 3		 -

Gbrowse_syn: quick tour

Gbrowse_syn: quick tour (shaded alignments)

Gbrowse_syn: quick tour (strand correction)

Optional "All in one" view

Adding markup to the annotations

How to use Insertions/Deletion data

Α

Tracking Indels with grid lines

Evolution of Gene Structure

Putative gene or loss

Comparing gene models

Comparing assemblies

Not bad

Needs work

Getting the most out of small aligned regions or orthology-only data

Gene Orthology

Chained Orthologs

What about synteny blocks that fall off the ends of the displayed reference sequence?

Solution 1: With multiple sequence alignment data, calculate many anchor points (done anyway for grid lines)

Solution 2: For orthology-based synteny blocks, use individual start and end coordinates of orthologs as anchor points.

Solution 3: If all else fails, guess the end of the target block based on the overall length ratio.

length displayed target = (length target/length reference)* length displayed reference

What if the aligned DNA sequences are too distant?

Pecan alignments

Protein orthology based Synteny blocks

What about segmental duplications?

The Future of GBrowse_syn*

- Integration with GBrowse 2.0
- · "On the fly" sequence alignment view
- AJAX-based user interface and navigation
- High-level graphical overviews
- Suggestions?

Acknowledgments

Lincoln Stein Dave Clements Scott Cain Jason Stajich Bonnie Hurwitz Eva Huala Cynthia Lee Jack Chen Ismael Verga Michael Han WormBase Curators

