







# Seeing the forest and the trees: visualizing next generation sequence data

Dave Clements
GMOD Help Desk
National Evolutionary Synthesis Center (NESCent)
clements@nescent.org

Next Generation Genome Analysis in Non-Model Organisms An AGA Special Event June 13, 2009

#### Overview

- Visualizing Next Generation Sequence in GBrowse
  - The trees: SAMtools, and GBrowse as a short read viewer
    - Whole genome resequencing of E. coli strains
  - The forest: GBrowse for population genetics
    - SNPs in threespine stickleback
  - Other visualizations
  - Next Generation Sequencing & Bioinformatics
- GMOD for non-MODs
  - Software
  - Community



#### **SAMtools**

#### Introduction

SAM (Sequence Alignment/Map) format is a generic format for storing large nucleotide sequence alignments. SAM aims to be a format that:

- Is flexible enough to store all the alignment information generated by various alignment programs;
- Is simple enough to be easily generated by alignment programs or converted from existing alignment formats;
- Is compact in file size;
- Allows most of operations on the alignment to work on a stream without loading the whole alignment into memory;
- Allows the file to be indexed by genomic position to efficiently retrieve all reads aligning to a locus.

SAM Tools provide various utilities for manipulating alignments in the SAM format, including sorting, merging, indexing and generating alignments in a per-position format.

#### General Information

SAM Format Specification
SourceForge Project Page

Mailing Lists

SVN Browse

Download Page

#### SAMtools in C

General Introduction

Manual Page

Pileup Format

Consensus/Indel Calling

Text Alignment Viewer

API Documentation

Picard: Java API/APPs

Heng Li, et al., http://samtools.sf.net

Platform neutral set of programs and file formats specifically for short reads.



American Genetic Association

#### **GBrowse**

GMOD's main genome browser

Backs Garfield & modENCODE

E. coli landing page

Overview: chromosome wide

Region: intermediate zoom

Details: current area

Tracks: current configuration





## The Trees: E. coli Whole Genome Resequencing

#### Tale of 4 strains

- Ancestral
  - Reference
- Derived 1
  - Manipulated in two places (neutral, metabolic)
  - Exposed to phage yielding 2 resistant strains
- Derived 1A
  - 1bp change
- Derived 1B
  - 2-3kbp deletion







#### E. coli: Process

- Extract DNA from 3 derived strains
- Sonicate, aiming for 500bp fragments
- Unpaired end run on an Illumina GA2
- Filter results for quality
- Align with MAQ\*
- Convert to BAM (SAMtools binary format)
- Visualize with GBrowse



\* Li H., Ruan J. and Durbin R. (2008) Mapping short DNA sequencing reads and calling variants using mapping quality scores. Genome Res., 18 (11), 1851-1858.

.American Genetic Association

High magnification view: 100bp

Uses GBrowse 2 (Beta) and the Bio-SamTools GBrowse database adaptor (Alpha).





As you zoom out to 200bp you lose letters.

As you zoom out to 2000bp the view becomes much less useful.

SAMtools, GBrowse 2, & Bio-SamTools adaptor make this volume of data computationally tractable





Summarize!

SAMtools and GBrowse help here

SAMtools can summarize several values from the data.





Derived A Read Depth Even basic summarization can be enough to gain insight. GC content & read <sup>ta</sup> coverage depth for Derived A coverage for first Plus Strand Derived A Read Depth 200Kbp of *E. coli* cestral DNA erived1 coverage (xyplot Strand Read coverage depth for Derived A Minus Strand Derived A Read Depth riation



American Genetic Association

#### Overview

- Visualizing Next Generation Sequence in GBrowse
  - The trees: SAMtools, and GBrowse as a short read viewer
    - Whole genome resequencing of E. coli strains
  - The forest: GBrowse for population genetics
    - SNPs in threespine stickleback
  - Other visualizations
  - Next Generation Sequencing & Bioinformatics
- GMOD for non-MODs
  - Software
  - Community



## The Forest: GBrowse for Population Genetics

#### Threespine Stickleback

- Tale of 2 populations, 8 (or 12) fish from each
  - Rabbit Slough, marine
    - ancestral, reference
    - High body plating
  - Bearpaw Lake, freshwater
    - Diverged in last 10-15,000 years
    - Low body plating
- Pattern repeats all over northern hemisphere
- Deep sequencing around restriction sites
- Aiming to identify SNPs at a minimum density, genome wide









#### **GBrowse for Population Genetics**

#### Process for threespine stickleback

- Extract DNA from each fish
- Break it up with restriction enzymes.
- Apply RAD tags with bar code
- Do an unpaired-end run on an Illumina GA2
- Filter results for quality
- Align it with MAQ
- Make SNP calls
- Visualize it with GBrowse



# GBrowse for Population Genetics

#### **Shows**

Where we looked
Allele & genotype
frequencies
By population
Individual genotypes

#### Could also show:

- Frequency by phenotype or any other characteristic
- Sliding window stats





#### Overview

- Visualizing Next Generation Sequence in GBrowse
  - The trees: SAMtools, and GBrowse as a short read viewer
    - Whole genome resequencing of E. coli strains
  - The forest: GBrowse for population genetics
    - SNPs in threespine stickleback
  - Other visualizations
  - Next Generation Sequencing & Bioinformatics
- GMOD for non-MODs
  - Software
  - Community



#### HapMap Allele Frequencies



http://hapmap.org



#### Geolocation data





#### Methylation in Human

# Mostly ChIP-Seq results

Visualization by
Computational
Biology Research
Group at Oxford





#### Transcriptome

Transriptome analysis for modENCODE

Custom
modifications to
some glyph
code

Visualization by Don Gilbert



http://insects.eugenes.org/species/data/dmel5/modencode/bigmap/



American Genetic Association

#### Overview

- Visualizing Next Generation Sequence in GBrowse
  - The trees: SAMtools, and GBrowse as a short read viewer
    - Whole genome resequencing of E. coli strains
  - The forest: GBrowse for population genetics
    - SNPs in threespine stickleback
  - Other visualizations
  - Next Generation Sequencing & Bioinformatics
- GMOD for non-MODs
  - Software
  - Community



#### Needed Resources

#### To visualize NGS data you will need

- Data
- A computer, or two
  - How big?
- Bioinformatics support
  - How much?



#### Bioinformatics Support for NGS

Yesterday, everybody mentioned their bioinformatics support people.



"LOTS of data."

Valerie Reinke, yesterday



#### You Need to Hire Lots of 🥦



#### GenomeWeb Survey

Almost all survey respondents pointed out the considerable computational and bioinformatics needs that the new platforms require. "Anyone thinking of getting these instruments needs a strong IT/informatics group," wrote one Illumina user.

"Our greatest challenge is the lack of bioinformatics support," another said.

"Invest in file servers, computer platforms, and computational biologists," a 454 user said.

An ABI SOLiD user said the greatest challenge has been "data management, interrogation, and visualization."





#### You should learn some bioinformatics too.

"Will the next generation of scientists be more trans-disciplinary? Absolutely."

Eric Green, yesterday

"One weekend messing with Perl."

Brent Graveley, yesterday, sort of



http://xkcd.com/519/





#### Overview

- Visualizing Next Generation Sequence in GBrowse
  - The trees: SAMtools, and GBrowse as a short read viewer
    - Whole genome resequencing of E. coli strains
  - The forest: GBrowse for population genetics
    - SNPs in threespine stickleback
  - Other visualizations
  - Next Generation Sequencing & Bioinformatics
- GMOD for non-MODs
  - Software
  - Community



#### **GMOD** for Non-Models

## GMOD is two equally important things:

- A set of interoperable open-source software components for visualizing, annotating and managing biological data.
- An active community of developers and users that are addressing common challenges with their biological data.
  - Mailing lists, meetings, support staff, wiki, ...



American Genetic Association

#### **GMOD Software: A whirlwind tour**

**Apollo** 

**GBrowse & JBrowse** 

CMap

**MAKER & DIYA** 

GBrowse\_syn, Sybil, ...

Chado, GMODWeb, Tripal

BioMart, InterMine

**Pathway Tools** 

. . .





## **GMOD:** Community

Next GMOD Meeting
University of Oxford, UK
6-7 August 2009
Part of GMOD Europe 2009

#### **GMOD Courses**

Multi-day, hands-on tutorials covering installation and configuration of GMOD components

Both 2009 courses are full
Offered again in 2010
Considering one in Asia/Pacific







#### GMOD: Who uses it?

































































Plus several *hundred* others.



#### Acknowledgements

Indiana

Don Gilbert

Heng Li

Sanger

**OICR** 

Lincoln Stein Scott Cain

**NESCent** 

**Todd Vision** 

Hilmar Lapp

Oregon

Nick Stiffler
Liz Perry
Brendan Bohannon
Paul Hohenlohe
Bill Cresko
Patrick Phillips

UConn

Linda Strausbaugh Rachel O'Neill

Oxford
Steve Taylor



American Genetic Association

#### Thank You!



#### Dave Clements GMOD Help Desk

National Evolutionary Synthesis Center

clements@nescent.org help@gmod.org

http://gmod.org/GMOD\_Help\_Desk http://nescent.org





American Genetic Association

## Bioinformatics Support for NGS

- Examples
  - E. coli data
    - Given aligned reads, SNP calls
    - Did software installs and configuration, but no programming
  - Threespine Stickleback
    - Given aligned reads, SNP calls
    - Did installs and configuration, and some scripting (Python and Perl)
- To just visualize the data
  - You need someone who can install and configure software, and write scripts.

