

MAKER: an easy-to-use genome annotation pipeline

Barry Moore and Daniel Ence Yandell Lab University of Utah Carson Holt
Ontario Institute for Cancer Research

Advances in Second-Generation Technology is Starting to Make Whole Genome and Transcriptome Sequencing "Routine" Even for Small Labs

Advances in Second-Generation Technology is Starting to Make Whole Genome and Transcriptome Sequencing "Routine" Even for Small Labs

Advances in annotation technology have not kept pace with genome sequencing, and annotation is now the major bottleneck affecting modern genomics research.

MAKER

an annotation pipeline and genome-database management tool for second-generation genome projects

User Can be run by a single individual with little bioinformatics

Requirements: experience

User Can be run by a single individual with little bioinformatics

Requirements: experience

System Can run on laptop or desktop computers (running Linux or

Requirements: Mac OS X)

User Can be run by a single individual with little bioinformatics

Requirements: experience

System Can run on laptop or desktop computers (running Linux or

Requirements: Mac OS X)

Output is compatible with popular annotation tools like

Program Output: Apollo and GBrowse

User Can be run by a single individual with little bioinformatics

Requirements: experience

System Can run on laptop or desktop computers (running Linux or

Requirements: Mac OS X)

Output is compatible with popular annotation tools like

Program Output: Apollo and GBrowse

Availability: Free open source application (for the academic community)

Annotating the Genome – Apollo View

Identify and mask repetitive elements

Generate ab initio gene predictions

Align EST and protein evidence

Polish BLAST alignments with Exonerate

Pass gene-finders evidence-based 'hints'

Identify gene model most consistent with evidence

^{*}Quantitative Measures for the Management and Comparison of Annotated Genomes Karen Eilbeck , Barry Moore , Carson Holt and Mark Yandell BMC Bioinformatics 2009 10:67doi:10.1186/1471-2105-10-67

Revise it further if necessary; create new annotation

Compute support for each portion of gene model

Compute support for each portion of gene model

^{*}Quantitative Measures for the Management and Comparison of Annotated Genomes Karen Eilbeck , Barry Moore , Carson Holt and Mark Yandell BMC Bioinformatics 2009 10:67doi:10.1186/1471-2105-10-67

Compute support for each portion of gene model

^{*}Cantarel BL, Korf I, Robb SMC, Parra G, Ross E, Moore B, Holt C, Sanchez Alvarado A, Yandell M: MAKER: An easy-to-use annotation pipeline designed for emerging model organism genomes. *Genome Res* 2008, 18:188-196.

Quality control and data prioritization

- Quality control and data prioritization
- mRNA-seq integration
- Update/revise legacy annotation sets
- Integrating new evidence into existing databases

Legacy Annotation Set 1

Legacy Annotation Set 2

Legacy Annotation Set n

- Identify legacy annotation most consistent with new data
- Automatically revise it in light of new data
- If no existing annotation, create new one

mRNA-seq in MAKER

MAKER Web Annotation Service:

an online portal for genome annotation and analysis

More MAKER Features

- Auto-training of SNAP
- Improved filtering of gene models
- Comma separated file lists and labels ("blastx:uniprot" or "blastx:hymenoptera")
- Local install of MWAS
- Interactive install and configuration
- Easy GMOD integration (pre-loaded with configuration files and scripts - maker2chado and maker2jbrowse)

Distributed Parallelization

• Supports Message Passing Interface (MPI), a communication protocol for computer clusters which essentially allows multiple computers to act like a single powerful machine.

Data throughput

Proof-of-principle:

MAKER: Proof of Principle

Pythium ultimum var ultimum (potato rot)

Pinus taeda (loblolly pine) *BACs Only

Fusarium circinatum (pitch canker fungus)

Atta cephalotes (leaf-cutter ant)

Pogonomyrmex barbatus (red harvester ant)

Linepithema humile (Argentine ant)

Petromyzon marinus (lamprey)

Schmidtea mediterranea (flatworm)

MAKER is being used by over 700 other projects world wide

Community Annotation System (CAS)

Conclusions

Towards a Turn-key Solution to Genome Annotation

- Easy-to-use
- Fully automated
- Structural and functional annotation
- *De novo* and re-annotation
- Data prioritization and database management
- Integrates with GMOD tools (Chado, Apollo, GBrowse, etc.)

Acknowledgements

- · I'd like to thank and recognize all contributions from my former advisor Mark Yandell at the University of Utah, his lab members Barry Moore and Hao Hu. And I would like to thank his former lab members Brandi Cantarel and Hadi Islam for involvment in developing MAKER.
- I would also like to recognize collaborators Ian Korf at UC Davis and his lab member Genis Parra for their contributions.
- Special thank you to Dave Clements and Scott Cain for their contributions to MAKER via GMOD.
- Genome Project Collaborators:
 - Alejandro Śánchez Alvarado University of Utah, HHMI
 - Robin Buell Michigan State University
 - Weiming Li Michigan State University
 - Makadonka Mitreva Washington University
 - Allen Kovach UC Davis
 - Brenda Wingfield University of Pretoria, South Africa
 - Christopher D. Smith San Francisco State University
 - Christopher R. Smith Earlham College
 - Jürgen Gadau Arizona State University
 - Neil Tsutsui University of California Berkeley
 - Cameron Currie University of Wisconsin-Madison
- Contributions in Testing and Development
 - Sánchez Alvarado lab, University of Utah Sofia Robb and Eric Ross
 - Washington University Genome Sequencing Center John Martin, Kymberlie Hallsworth, Asif Chinwalla, Christopher Schuster, Mark Johnson, and William Nash
- This project is supported by funding from the NHGRI through an RO1 grant entitled *Software for the creation and quality control of genome annotations*.
- This project is supported by an NIH Genetics Training Grant